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Conformations of a Long Polymer in a Melt of Shorter Chains:
Generalizations of the Flory Theorem
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ABSTRACT: Large-scale simulations of the swelling of a long
N-mer in a melt of chemically identical P-mers are used to
investigate a discrepancy between theory and experiments.
Classical theory predicts an increase of probe chain size R ~
P with decreasing degree of polymerization P of melt
chains in the range of 1 < P < N*/% However, both experiment
and simulation data are more consistent with an apparently
slower swelling R ~ P~*! over a wider range of melt degrees of
polymerization. This anomaly is explained by taking into
account the recently discovered long-range bond correlations
in polymer melts and corrections to excluded volume. We
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generalize the Flory theorem and demonstrate that it is in excellent agreement with experiments and simulations.

he description of macromolecular conformations in

various environments is one of the cornerstones of
polymer physics research. A fundamental test of standard
models of polymer conformations is the problem of an N-mer
immersed in a melt of chemically identical P-mers. This
question has been addressed by numerous works in the past' ™
and was considered to be well understood from the theoretical
point of view. In all of these works it was argued that a scaling
variable proportional to N/P* describes the crossover between
ideal and swollen chain conformations.” However, the available
experimental data’~"' turned out to be in rather poor
agreement with the theoretical predictions. Some studies even
propose a significantly different scaling of the chain size”'”'" in
its crossover between swollen and ideal chain conformations
with increasing molecular weight of the matrix polymers. In this
letter, we generalize the Flory theory by taking into account the
recently proposed long-range bond correlations'>"?
corrections to excluded volume in dense polymer systems.
We demonstrate that the generalized Flory theorem is in
excellent agreement with experimental and simulation data.

In the following, we use P and N to denote the number of
Kuhn segments per matrix and guest chains, respectively. The
Flory theorem is based upon the concept that the monomeric
excluded volume parameter in a melt of P-mers is screened by a
factor of 1/P and, thus, very small for large P. The root-mean-
square radius of gyration R of dilute N-mers in a melt of P-mers
can be estimated by minimizing free energy AF (dropping all
coefficients on the order of unity)

and
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where k is the Boltzmann constant; T is the absolute
temperature; and v is the excluded volume in a liquid of
Kuhn monomers. The first term of the free energy describes the
entropic penalty for swelling a chain with N segments from its
ideal size Ry ~ b(N/6)"* to R, whereby b is the length of a
Kuhn segment. The second term is the mean field estimate of
the interaction of N monomers with excluded volume
parameter v/P randomly distributed over the chain volume
R3. The third term is the confinement free energy. Denoting the
swelling ratio by @ = R/Ry, eq 1 can be rewritten as

V4 1

2
— R+ =+ —
kT @ o )
where the interaction parameter
Z ~ (v/b)N*/P (3)

determines the strength of the excluded volume interactions
(Z* is proportional to the number of “thermal blobs™* per N-
mer). Minimization of free energy AF (eq 2) leads to a swelling
ratio as a function of the interaction parameter

a=R/R,=f(2) )

For melt chains with P > N/ this interaction parameter is
small, Z < 1, and the size of an N-mer in the melt of relatively
long P-mers (determined by balancing the first and third terms
of eq 2) is almost ideal with swelling ratio & = f(0) = 1.

For shorter melt chains P < N'/2, the interaction parameter
is large, Z > 1, and the size of the polymer is determined by
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balancing the first two terms of the free energy eq 2 (since the
confinement term is not important for swollen chains) with
f(Z) ~ Z". In this case of P < N'/2, one obtains"'* the size of
a swollen N-mer

1/sy2/Sp=1/Spp/S ()

For monomeric solvent, P = 1, this leads to the well-known R

~ bNY2(NV2b?)?* ! with scaling exponent v = 3/5 close to the
exponent v = 0.588 obtained by more accurate numerical
methods."®
In order to test the above predictions and in order to explain
the discrepancy between theoretical prediction and exper-
imental data we simulated bidisperse melts of linear chains
using the bond fluctuation model.'® This simulation method
was frequently used to study polymer melts and networks (see
refs 12 and 17 and the references therein). To distinguish
between Kuhn segments and degrees of polymerization of the
simulated chains, we denote the latter by small letters p and n
for melt and guest chains, respectively. We relate the degree of
polymerization to the number of Kuhn segments via p = C, P
and n = C,N."® All samples of the present study contain 2!
monomers at a “lattice occupation density” of 50% of the
maximum possible monomer occupation density, which refers
to a monomer number density of 1/16 that is considered'® as a
concentrated solution with melt-like properties. As a starting
point we used a well-equilibrated monodisperse melt of chains
containing 512 monomers each. The degree of polymerization
p of the bulk material and test chain degree of polymerization n
were chosen as p = 2' with i = 0, .., 9 and n = 2/ with j = 3, .., 9.
A randomly selected fraction of 1/32 of the 512-mers was cut
down to degree of polymerization n, while the 31/32 of all 512-
mers were cut down to p. This volume fraction is sufficiently
low that the n-mers in all samples are below their overlap
volume fraction. Thereafter, the samples were relaxed for at
least one more relaxation time of the longest chains in the
sample. Furthermore, it was checked that the melt chains
reached conformations with corrections to ideal behavior as
described in ref 12. Afterward, conformations were sampled for
a duration of 10° simulation steps for n = 512, which is roughly
five relaxation times of the longest chains in a monodisperse
melt. For shorter chains, the conformations were sampled for at
least 20 relaxation times, as defined by the end-to-end vector
autocorrelation time. Error bars for the root-mean-square
radius of gyration R were computed from the mean fluctuations
of the ensemble average of the R data as a function of time
divided by the square root of the number of relaxation times of
the chains in order to provide an accurate estimate of the
statistical significance of each data point.
The classical works based on the Flory theorem'™® predict a
universal plot for chain swelling ratio a = R/R, as a function of
Z o« N'2/P. Figure 1, which is a naive plot of & as a function of
N/P* x 7? using N/P? = 11Cc,o/p2 with Flory’s characteristic
ratio C, = 1.52 from ref 12, shows that this procedure does not
lead to a collapse of the data. Thus, neither the experimental
data® "' nor our simulation data agree with the classical
prediction that the swelling ratio @ = R/R, is a universal
function of the interaction parameter Z NY2/p.

Several previous experimental studies proposed a significantly
different scaling of the chain size”'>'" as a function of N/P
instead of N'/2/P. For this phenomenologial scaling, we obtain
a better but yet not satisfactory overlap of the simulation data in
Figure 2. Notably, large deviations are found for N/P < 10 in
Figure 2. This figure also contains a comparison”® with the data
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Figure 1. Lack of overlap of the simulation data of the ratios of the
mean square radii of gyration R* of chains with N Kuhn segments in a
melt of chains with P Kuhn segments to their ideal mean square radii
of gyration R(Z) = b’N/6 using the classical scaling variable N, /P2
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Figure 2. Partial overlap of the ratios of mean square radii of gyration
R? of chains with N Kuhn segments in a melt of chains with P Kuhn
segments to their ideal mean square radii of gyration RZ; =b’N/6 using
the nonclassical scaling variable N/P of Landry.” Same symbols for
simulation data as in Figure 1; experimental data of ref 7 are depicted
by black stars.

of Landry.” Both Figures 1 and 2 are suggesting that significant
corrections for the unswollen re§ime are necessary.

Recently, it was emphasized'>" that the intramolecular bond
correlation function in dense melts decays as a power law in
contrast to an exponential decay for chains without long-range
correlations. This leads to a partial swelling of polymer chains
even in monodisperse melts with the mean square radius of
gyration of a chain with n monomers approximated'* by

—2 Cl*
0 6 (6)

with characteristic ratio

C, = cw(1 - L)
Jn (7)

The coeflicient ¢ = 0.656, root-mean-square bond length [ =
2.636, and C,, = 1.52 were determined in ref 12 at simulation
conditions identical to the present study. We expect that long
n-mers dissolved in small p-mers start swelling from this new
reference chain size R. Thus, we define the expansion factor @
= R/R, with this new reference size for the discussion below.

DOI: 10.1021/mz500777r
ACS Macro Lett. 2015, 4, 177-181


http://dx.doi.org/10.1021/mz500777r

ACS Macro Letters

To test this hypothesis quantitatively, we compute the new
swelling ratio @ for all data and solve eq 2 numerically. Note
that we return here to the original interaction parameter, eq 3,
with the scaling variable o« N, /P? where N and P are numbers of
Kuhn segments in test and melt chains, respectively. The
excluded volume v is the only adjustable parameter. We obtain
v/b* = 0.17 from a best fit to all simulation data. Figure 3 shows
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Figure 3. Ratios of mean square radii of gyration R of chains with N
Kuhn segments in a melt of chains with P Kuhn segments to their
mean square radii of gyration R3 in monodisperse melt corrected for
long-range bond correlations (eq 6). The line is the best fit of all data
to the numerical solution of eq 2 for swelling ratio @ = R/R, with v/b?
= 0.17.

that the above correction improves the overlap of the data at
small N/P? < 1, but no unique crossover function of the data is
obtained. Instead, the data show a systematic shift for small p.

For a lattice model with lattice constant smaller than
monomer size or for off-lattice models, the excluded volume of
a single monomer is larger than the bare volume of a monomer
in contrast to regular lattice models including Flory—Huggins
theory. Furthermore, denser packing with submonomer-size
spacing between monomers becomes possible in models with a
grid finer than monomer size. Thus, the gain in the net
conformational entropy when placing chain ends in nearest
positions next to inner monomers leads to a denser packing of
chain ends next to other monomers similar to the enrichment
of chain ends near a solid wall.>" This is in accord with the fact
that we detected a clearly larger fraction of p-mer chain ends as
compared to inner monomers in nearest-neighbor positions of
the monomers of n-mers.

An n-mer in a melt of p-mers is in contact with « n/p ends of
surrounding chains. Since the ends of p-mers pack closer to n-
mers, the effective volume fraction ¢ excluded by n-mers
decreases with increasing concentration of ends of p-mers (with
decreasing p). Similarly, the ends of n-mers contribute less to
the total excluded volume of n-mers by a closer packing to
surrounding monomers. In consequence, the inner monomers
of the n-mers experience a different packing of ends of the
surrounding p-mers. Such corrections to ¢ proportional to the
concentration of chain ends of p-mers are expected to be

¢ =¢(1 = y/n)(1 = z,/p) (8)

with numerical constants y and an n-dependent z, that can be
determined directly from simulation data.

To detect whether there are indeed such corrections to the
effective excluded volume fraction ¢, (eq 8), we performed the
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following analysis: First, we calculated the number fraction of
lattice sites that are accessible for inserting an additional
monomer in all bidisperse blends. Next, we removed all n-mers
(a number fraction of 1/32 of all monomers) from all snapshots
of the bidisperse samples and repeated this analysis. The
difference in the number fraction of accessible sites for
bidisperse samples with n-mers removed and the original
bidisperse samples measures the effective volume fraction ¢,
that is blocked by n-mers. The results of this analysis display a
reasonable agreement with the correction proposed in eq 8 as
shown in Figure 4. As we see from the fit, the effective excluded
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Figure 4. Corrections to the volume fraction of n-mers in binary

blends with p-mers (eq 8), with ¢ = 0.0194 + 0.001,y = 1.3 + 0.1, and
z, & 0.26(1—1.2/n) approaching z,, = 0.26 + 0.01 for large n (inset).

volume fraction for long matrix chains p >> 1 increases with
degree of polymerization of test chains 1 as ¢ o ¢(1 — y/n),
due to the smaller excluded volume of chain ends. The
asymptotic value ¢ = 0.0194 for n, p > 1, corresponds to an
average of 9.93 lattice sites excluded per test chain monomer.
The effect of the ends of p-mers described by parameter z, &
0.26(1 — 1.2/n) (see Figure 4 inset) increases roughly with the
fraction of inner monomer sections 1 — 1/n at which the ends
of p-mers prefer to pack. In this work we consider relatively
Iong22 test chains; therefore, we neglect the y/n correction to ¢
in eq 8. For similar reasons, we use the limiting value of z, in
our analysis below.”> This reduces the expression for the
effective volume fraction to

43 ~ ¢(1 - Zoo/p)

with ¢ = 0.0194 and z, = 0.26 + 0.01.

In the framework of the Flory—Huggins model, the excluded
volume interaction is'* o (v/P)¢? and the p-dependence of
the volume available for n-mers is considered by replacing P by
P/(1 — z./(PCq))* with z,, = 0.26 in the expression for the
interaction parameter.

This leads to a modified interaction parameter

2 ~ (v/B)N(1 = 2/ (PC,))* /P

©)

(10)

In Figure S, we plot the normalized mean square radius of
gyration of chains with N Kuhn segments, @* = R*/Rj, as a
function of N(1 — z,/(PCy))*/P*  Z2. The parameter c in
the expression for mean square reference size of chains, R, (eq
6 and 7) is varied to optimize the collapse of the data along the
y-axis. Optimum overlap is obtained for ¢ = 0.86 + 0.03, if data
for N < P are ignored (see Figure S). Next, we fit the minimum
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Figure 5. Ratio of mean square radius of gyration R* of chains with N
Kuhn segments in a melt of chains with P Kuhn segments to their
mean square radius of gyration Rj corrected for long-range bond
correlations (eq 6). Abscissa is proportional to the square of the
interaction parameter Z? corrected for the effective volume fraction of
test chains (eq 10). Red solid line is best fit of the numerical solution
of eq 11 to simulation data, and dashed line is the fit of solution of eq
11 to experimental data.
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w

(11)

to the data in Figure S resulting in a best fit for the excluded
volume parameter v/b®> = 0.30 + 0.01 (see red solid line in
Figure 5). Our optimum value of parameter ¢ = 0.86 is larger
than ¢ = 0.656 of refs 12 and 13 which was obtained for
monodisperse melt data ignoring the contribution of excluded
volume interactions. Our slightly larger value of ¢ corresponds
to a smaller size of test chains in a melt of infinitely long matrix
chains in comparison to weakly swollen chains in mono-
dispersed melt. The increase of the excluded volume parameter
from v/b*> = 0.17 in Figure 3 to v/b* = 0.30 in Figure S results
from the corrections to the interaction parameter (eq 10).

The experimental data of ref 7 are added to Figure S using
the optimal value of parameter ¢ & 5 + 3 to ensure R*/R} = 1
for small N/P? The best fit of experimental data to the solution
of eq 11 is shown by the dashed curve in Figure 5 with excluded
volume parameter v/b* = 0.38 + 0.03.* We observe a clearly
better collapse of the experimental data as a function of the
corrected interaction parameter o Z? with a chain expansion
that follows the classical prediction instead of a scaling o N/P
as suggested in ref 7.

Interestingly, it is not possible to fully collapse the simulation
data in Figure S at small N(1 — z,./(PC,,))*/P? if N < P. The
Flory approach seems to break down for N < P, possibly
because the surrounding p-mers no longer fit into the pervaded
volume of an n-mer. Instead, only sections of &% n monomers of
the larger p-mers are overlapping with the n-mer. In
consequence, the excluded volume contribution (but not the
correction due to packing of ends) becomes similar to the
contribution in monodisperse melts & v/N instead of « v/P for
N < P. This can be taken into account by using a new
interaction parameter

Z =~ (v/b)N"*(1 = z_/(PC,))*/min(P, N) (12)

The resulting plot in Figure 6 leads to an overlap of all data®®
confirming that these three corrections are necessary to
understand the conformations of n-mers in a melt of p-mers:
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Figure 6. Computer simulation data®® from Figure 5 with overlap
correction to excluded volume (eq 12).

(a) long-range correlations due to intramolecular contacts, (b)
p-dependence of the volume fraction ¢, occupied by n-mers,
and (c) the correction to the excluded volume for long matrix
chains p > n.

Our analysis demonstrates that the swelling of n-mers
approaches the classical prediction for sufficiently large p and
n. Less than 10% shift from the limiting case is obtained for our
simulation data, if n > 100c &~ 86 (shift along y-axis) or p >
38z, &~ 10 (shift along x-axis), when plotting the data as a
function of Z2 It is also evident from our discussions that the
effect of correlations in bond orientations modify predom-
inantly the unswollen regime N/P* < 1, while the corrections to
excluded volume are most important for small p and, thus,
predominantly for N/P? > 1. Furthermore, data with P > N can
be collapsed, if the excluded volume is computed as a function
of min(P, N). Previous observations”'>'" of the data scaling
with N/P rather than N/P* can be understood from the
combined effect of these corrections.
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